Coal Mine Methane Recovery & Utilization in the United States:

Barbora Jemelkova

Coalbed Methane Outreach Program US Environmental Protection Agency

US Coal Mine Methane Conference Pittsburgh, PA October 29, 2008

- CMOP Mission: to work with the coal mining and related industries to reduce CMM emissions costeffectively
- What we do in a nutshell:
 - ➤ Identify profitable opportunities for project development
 - Identify and help overcome market, regulatory, and technical barriers
 - Offer technical and analytic support where appropriate
 - Conduct direct outreach to coal mines
- Need for a tool to analyze CMM project costs and benefits

Coal Mine Methane Project Cash Flow Model

- Goal: user-friendly, attractive, informative, and useful
- Assembled a team of economists, programmers, and CMM industry specialists with on-the-ground experience
- Carefully selected six end-uses for U.S. market
- Surveyed external industry experts for specific default and recommended parameters
- Conducted internal and third-party review to ensure operability and accuracy

Coal Mine Methane Project Cash Flow Model Beta Version

Model is designed to:

- Provide first-cut estimate of CMM project economics
- Compare profitability of different end use options at a particular site
- Help project developers and equipment vendors better understand their customers

•Model is NOT designed to:

- Replace detailed economic analysis or feasibility study
- Replace an in-house, site specific model

Choose an end-use

Provide four (4) categories of inputs

Gas Collection

- Gathering and Delivery System Parameters
- Drainage Well Development Costs

- Gas Collection estimating gathering & delivery costs
 - > 100% of costs are included no opt out
- 1) Gathering system (G) annual operating cost inputs:

Mining rate, ft/yr (12,000 ft/yr default)

Unit cost of pipeline installed (40 \$/ft default)

$$G = 12,000 ft \times 40$$
\$\frac{1}{2} ft = 480,000 \$\frac{1}{2} yr\$

2) Compressor (**C**) capital cost inputs:

Compressor cost, \$/hp

Compressor efficiency, hp/mcfd (0.035

Gas flow rate, mcfd

(\$1000/hp default) (0.035 hp/mcfd default)

(no default)

C = (\$1000/hp) * (0.035 hp/mcfd) * (x mcfd)

 Gas Collection – estimating gathering & delivery costs cont.

3) Pipeline (**P**) capital cost inputs:

Pipe cost, \$/ft (\$40/ft default)

Pipeline length, ft (21,000 ft default)

P = (\$40/ft) * (21,000 ft) = \$840,000

- Gas Collection estimating drainage development costs
 - Default is to exclude these costs from the analysis
 - User can decide to include a fraction of these costs

1) Gob well (**W**) annual operating cost inputs:

Well spacing, ft/well

Mining rate ft/vr

Mine depth, ft

Unit drilling cost, \$/ft

(1,000 ft/well default)

(12 000 ft/vr default)

(1,000 ft default)

(1,000 ft default)

(1,000 ft default)

$$\mathbf{W} = \frac{12.000 \, ft \, / \, vr}{1000 \, ft \, / \, well} \times 1,000 \, \hat{\ } \times 140 \$ / \, \hat{\ } = 1,680,000 \$ / \, yr$$

*Selecting the default mining rate of 12,000 ft/yr and the default well spacing of 1000 ft/well results in a model-assumed well instillation rate of 12 wells per year.

Gas Collection – estimating gathering & delivery costs cont.

2) Blower (B) capital cost inputs:

Blower cost, \$/hp
Blower efficiency, hp/mcfd

Gas flow rate, mcfd

(\$1000/hp default) (0.035 hp/mcfd default)

(no default)

```
\mathbf{B} = (\$1000/\text{hp}) * (0.035 \text{ hp/mcfd}) * (x \text{ mcfd})
```

3) **F** = the fraction of the drainage system cost that is included in the CMM project cost.

- Gas Collection summary
 - Annual operating cost = G + (W * F)
 - \triangleright Capital Cost = C + P + (B * F)
 - •F is applied only to drainage development costs
 - B and W can be excluded by defining F as 0
 - B and W can be partially borne by the CMM project bottom line and partially by the coal production bottom line
 - Assume that B and C are powered by the project CMM

Coalbed Methan

US EPA Coalbed Methane Outreach Program

Provide four (4) categories of inputs

2. Gas Availability

- CMM drained per day
- Some requested inputs are end-use specific

3. User-Defined Inputs

- Create a Scenario Name
- Input site-specific parameters such as distances, prices, equity structure

4. Default Parameters

Input parameters that are independent of the project such as inflation; royalty, severance tax, and negotiation fees; contingency factor.

- Model Calculations Pipeline Injection
 - Assume installation of membrane or pressure swing adsorption system to remove nitrogen and CO2

Cost of gas upgrade facility

- Model Calculations Coal Dryers and Mine Boilers
 - Model assumes existing equipment will be retrofit, so capacity remains constant during switch
 - ➤ Up to 100% of CMM will offset coal used, and any remaining demand will be met by coal
 - ie: model allows for co-firing
 - ➤ Other end-use scenarios assume new equipment is specified for available CMM volumes

Model Outputs

- CMM available for other projects model can be rerun
- > IRR, NPV, CERs earned (tonnes/year), equity and debt requirements
- Some inputs are repeated to inform the final analysis
 - Interest rate discount rate carbon aradit price
- Can generate an attractive flyer to save or print
 - Cash flow analysis bar graph
- Can return to input screen to modify specific variables and rerun your scenario

 Summary – CMOP tool available to help YOU analyze the costs and benefits of implementing a CMM use project

Next Steps

- visit CMOP booth for model demonstration
- Get started with the User's Guide
- ➤ Download model from www.epa.gov/cmop
- Contact CMOP with any question, requests for assistance, or suggestions for enhancement
 - >CMOPmodel@erg.com
 - > lavna Camara 202_2/2_0206

- Model Calculations Pipeline Injection, cont.
 - Some methane is removed into waste stream, depending on the concentration of methane in the inlet gas

Methane Recovery Efficiency

